{ "id": "1610.03172", "version": "v1", "published": "2016-10-11T03:45:54.000Z", "updated": "2016-10-11T03:45:54.000Z", "title": "Pinned algebraic distances determined by Cartesian products in $\\mathbb{F}_p^2$", "authors": [ "Giorgis Petridis" ], "comment": "9 pages", "categories": [ "math.CO" ], "abstract": "Let $p$ be an odd prime and $A \\subseteq \\mathbb{F}_p$ be a subset of the finite field with $p$ elements. We show that $A \\times A \\subseteq \\mathbb{F}_p^2$ determines at least a constant multiple of $\\min\\{p, |A|^{3/2}\\}$ distinct pinned algebraic distances.", "revisions": [ { "version": "v1", "updated": "2016-10-11T03:45:54.000Z" } ], "analyses": { "keywords": [ "cartesian products", "distinct pinned algebraic distances", "odd prime", "finite field", "constant multiple" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }