{ "id": "1610.03027", "version": "v1", "published": "2016-10-10T19:00:05.000Z", "updated": "2016-10-10T19:00:05.000Z", "title": "On the union of intersecting families", "authors": [ "David Ellis", "Noam Lifshitz" ], "comment": "11 pages", "categories": [ "math.CO" ], "abstract": "We prove that for any integer $r \\geq 2$, if $X$ is an $n$-element set, and $\\mathcal{F} = \\mathcal{F}_1 \\cup \\mathcal{F}_2 \\cup \\ldots \\cup \\mathcal{F}_r$, where each $\\mathcal{F}_i$ is an intersecting family of $k$-element subsets of $X$, then $|\\mathcal{F}| \\leq {n \\choose k} - {n-r \\choose k}$, provided $n \\geq 2k+Ck^{2/3}$, where $C$ is a constant depending upon $r$ alone. Equality holds if and only if $\\mathcal{F} = \\{S \\subset X:\\ |S|=k,\\ S \\cap R \\neq \\emptyset\\}$ for some $R \\subset X$ with $|R|=r$. In the case $r=2$, this improves a result of Frankl and F\\\"uredi.", "revisions": [ { "version": "v1", "updated": "2016-10-10T19:00:05.000Z" } ], "analyses": { "subjects": [ "05D05" ], "keywords": [ "intersecting family", "element set", "element subsets", "equality holds" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }