{ "id": "1610.02077", "version": "v1", "published": "2016-10-06T21:38:32.000Z", "updated": "2016-10-06T21:38:32.000Z", "title": "A property of the Birkhoff polytope", "authors": [ "Barbara Baumeister", "Frieder Ladisch" ], "comment": "10 pages, pdflatex (with biblatex)", "categories": [ "math.CO", "math.GR", "math.RT" ], "abstract": "The Birkhoff polytope $B_n$ is the convex hull of all $n\\times n$ permutation matrices in $\\mathbb{R}^{n\\times n}$. We compute the combinatorial symmetry group of the Birkhoff polytope. A representation polytope is the convex hull of some finite matrix group $G\\leq \\operatorname{GL}(d,\\mathbb{R})$. We show that the group of permutation matrices is essentially the only finite matrix group which yields a representation polytope with the same face lattice as the Birkhoff polytope.", "revisions": [ { "version": "v1", "updated": "2016-10-06T21:38:32.000Z" } ], "analyses": { "subjects": [ "52B15", "52B05", "52B12", "20B25", "20C15", "05E18" ], "keywords": [ "birkhoff polytope", "finite matrix group", "convex hull", "permutation matrices", "representation polytope" ], "note": { "typesetting": "PDFLaTeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }