{ "id": "1610.02009", "version": "v1", "published": "2016-10-06T19:32:02.000Z", "updated": "2016-10-06T19:32:02.000Z", "title": "Killing tensors on tori", "authors": [ "Konstantin Heil", "Andrei Moroianu", "Uwe Semmelmann" ], "comment": "8 pages", "categories": [ "math.DG" ], "abstract": "We show that Killing tensors on conformally flat $n$-dimensional tori whose conformal factor only depends on one variable, are polynomials in the metric and in the Killing vector fields. In other words, every first integral of the geodesic flow polynomial in the momenta on the sphere bundle of such a torus is linear in the momenta.", "revisions": [ { "version": "v1", "updated": "2016-10-06T19:32:02.000Z" } ], "analyses": { "subjects": [ "53C25", "53C27", "53C40", "53D25" ], "keywords": [ "killing tensors", "geodesic flow polynomial", "killing vector fields", "conformal factor", "dimensional tori" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }