{ "id": "1610.01868", "version": "v1", "published": "2016-09-24T08:26:53.000Z", "updated": "2016-09-24T08:26:53.000Z", "title": "Conditions Equivalent to the Descartes-Frenicle-Sorli Conjecture on Odd Perfect Numbers", "authors": [ "Jose Arnaldo B. Dris" ], "comment": "8 pages", "categories": [ "math.NT" ], "abstract": "The Descartes-Frenicle-Sorli conjecture predicts that $k=1$ if $q^k n^2$ is an odd perfect number with Euler prime $q$. In this note, we present some conditions equivalent to this conjecture.", "revisions": [ { "version": "v1", "updated": "2016-09-24T08:26:53.000Z" } ], "analyses": { "subjects": [ "11A25" ], "keywords": [ "odd perfect number", "conditions equivalent", "descartes-frenicle-sorli conjecture predicts", "euler prime" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }