{ "id": "1610.01715", "version": "v1", "published": "2016-10-06T02:02:52.000Z", "updated": "2016-10-06T02:02:52.000Z", "title": "The $L^p$ Carleman estimate and a partial data inverse problem", "authors": [ "Francis J. Chung", "Leo Tzou" ], "comment": "33 pages plus appendix and references", "categories": [ "math.AP" ], "abstract": "We construct an explicit Green's function for the conjugated Laplacian $e^{-\\omega \\cdot x/h}\\Delta e^{-\\omega \\cdot x/h}$, which let us control our solutions on roughly half of the boundary. We apply the Green's function to solve a partial data inverse problem for the Schr\\\"odinger equation with potential $q \\in L^{n/2}$. We also use this Green's function to derive $L^p$ Carleman estimates similar to the ones in Kenig-Ruiz-Sogge \\cite{krs}, but for functions with support up to part of the boundary.", "revisions": [ { "version": "v1", "updated": "2016-10-06T02:02:52.000Z" } ], "analyses": { "subjects": [ "35R30" ], "keywords": [ "partial data inverse problem", "carleman estimates similar", "explicit greens function", "roughly half" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }