{ "id": "1610.01474", "version": "v1", "published": "2016-10-05T15:13:38.000Z", "updated": "2016-10-05T15:13:38.000Z", "title": "Left Invariant Randers Metrics of Berwald type on Tangent Lie Groups", "authors": [ "Farhad Asgari", "Hamid Reza Salimi Moghaddam" ], "categories": [ "math.DG", "math-ph", "math.MP" ], "abstract": "Let $G$ be a Lie group equipped with a left invariant Randers metric of Berward type $F$, with underlying left invariant Riemannian metric $g$. Suppose that $\\widetilde{F}$ and $\\widetilde{g}$ are lifted Randers and Riemannian metrics arising from $F$ and $g$ on the tangent Lie group $TG$ by vertical and complete lifts. In this article we study the relations between the flag curvature of the Randers manifold $(TG,\\widetilde{F})$ and the sectional curvature of the Riemannian manifold $(G,g)$ when $\\widetilde{F}$ is of Berwald type. Then we give all simply connected $3$-dimentional Lie groups such that their tangent bundles admit Randers metrics of Berwarld type and their geodesics vectors.", "revisions": [ { "version": "v1", "updated": "2016-10-05T15:13:38.000Z" } ], "analyses": { "keywords": [ "left invariant randers metric", "tangent lie group", "berwald type", "tangent bundles admit randers metrics", "riemannian metric" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }