{ "id": "1610.00511", "version": "v1", "published": "2016-10-03T12:19:36.000Z", "updated": "2016-10-03T12:19:36.000Z", "title": "Ergodic averages with prime divisor weights in $L^{1}$", "authors": [ "Zoltan Buczolich" ], "categories": [ "math.DS", "math.CA", "math.NT" ], "abstract": "We show that $ { \\omega }(n)$ and $ { \\Omega }(n)$, the number of distinct prime factors of $n$ and the number of distinct prime factors of $n$ counted according to multiplicity are good weighting functions for the pointwise ergodic theorem in $L^{1}$. That is, if $g$ denotes one of these functions and $S_{g,K}=\\sum_{n\\leq K}g(n)$ then for every ergodic dynamical system $(X, { { \\cal A } },\\mu, { \\tau })$ and every $f\\in L^{1}(X)$ $$\\lim_{K\\to { \\infty }} \\frac{1}{S_{g,K}}\\sum_{n=1}^{K} g(n)f( { \\tau }^{n}x)=\\int_{X}fd\\mu \\text{ for $\\mu$ a.e. }x\\in X. $$ This answers a question raised by C. Cuny and M. Weber who showed this result for $L^{p}$, $p>1$.", "revisions": [ { "version": "v1", "updated": "2016-10-03T12:19:36.000Z" } ], "analyses": { "subjects": [ "37A30", "11A25", "28D05", "37A05" ], "keywords": [ "prime divisor weights", "ergodic averages", "distinct prime factors", "ergodic dynamical system", "pointwise ergodic theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }