{ "id": "1610.00317", "version": "v1", "published": "2016-10-02T17:26:38.000Z", "updated": "2016-10-02T17:26:38.000Z", "title": "Suspension of the Billiard maps in the Lazutkin's coordinate", "authors": [ "Jianlu Zhang" ], "comment": "16 pages, 4 figures", "categories": [ "math.DS" ], "abstract": "In this paper we proved that under the Lazutkin's coordinate, the billiard map can be interpolated by a time-1 flow of a Hamiltonian $H(x,p,t)$ which can be formally expressed by \\[ H(x,p,t)=p^{3/2}+p^{5/2}V(x,p^{1/2},t),\\quad(x,p,t)\\in\\T\\times[0,+\\infty)\\times\\T, \\] where $V(\\cdot,\\cdot,\\cdot)$ is $C^{r-5}$ smooth if the convex billiard boundary is $C^r$ smooth. Benefit from this suspension we can construct transitive trajectories between two adjacent caustics under a variational framework.", "revisions": [ { "version": "v1", "updated": "2016-10-02T17:26:38.000Z" } ], "analyses": { "keywords": [ "lazutkins coordinate", "billiard map", "suspension", "convex billiard boundary", "construct transitive trajectories" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }