{ "id": "1609.09587", "version": "v1", "published": "2016-09-30T04:10:11.000Z", "updated": "2016-09-30T04:10:11.000Z", "title": "Constructions of invariants for surface-links via link invariants and applications to the Kauffman bracket", "authors": [ "Sang Youl Lee" ], "comment": "35 pages, 15 figures", "categories": [ "math.GT" ], "abstract": "In this paper, we formulate a construction of ideal coset invariants for surface-links in $4$-space using invariants for knots and links in $3$-space. We apply the construction to the Kauffman bracket polynomial invariant and obtain an invariant for surface-links called the Kauffman bracket ideal coset invariant of surface-links. We also define a series of new invariants $\\{{\\mathbf K}_{2n-1}(\\mathcal L) | n=2, 3, 4, \\ldots\\}$ for surface-links $\\mathcal L$ by using skein relations, which are more effective than the Kauffman bracket ideal coset invariant to distinguish given surface-links.", "revisions": [ { "version": "v1", "updated": "2016-09-30T04:10:11.000Z" } ], "analyses": { "subjects": [ "57Q45", "57M25" ], "keywords": [ "kauffman bracket ideal coset invariant", "surface-links", "link invariants", "construction", "applications" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }