{ "id": "1609.08900", "version": "v1", "published": "2016-09-28T13:14:34.000Z", "updated": "2016-09-28T13:14:34.000Z", "title": "Rank gradient of sequences of subgroups in a direct product", "authors": [ "Nikolay Nikolov", "Zvi Shemtov", "Mark Shusterman" ], "categories": [ "math.GR" ], "abstract": "For a sequence $\\{U_n\\}_{n = 1}^\\infty$ of finite index subgroups of a direct product $G = A \\times B$ of finitely generated groups, we show that $$\\lim_{n \\to \\infty} \\frac{\\min\\{|X| : \\langle X \\rangle = U_n\\}}{[G : U_n]} = 0$$ once $[A : A \\cap U_n], [B : B \\cap U_n] \\to \\infty$ as $n \\to \\infty$. Our proof relies on the classification of finite simple groups.", "revisions": [ { "version": "v1", "updated": "2016-09-28T13:14:34.000Z" } ], "analyses": { "subjects": [ "20F05", "20F69", "20D05", "20F65", "37A20" ], "keywords": [ "direct product", "rank gradient", "finite index subgroups", "finite simple groups", "proof relies" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }