{ "id": "1609.08710", "version": "v1", "published": "2016-09-27T23:51:06.000Z", "updated": "2016-09-27T23:51:06.000Z", "title": "Limit theorems for local and occupation times of random walks and Brownian motion on a spider", "authors": [ "Endre Csaki", "Miklos Csorgo", "Antonia Foldes", "Pal Revesz" ], "comment": "19 pages", "categories": [ "math.PR" ], "abstract": "A simple random walk and a Brownian motion are considered on a spider that is a collection of half lines (we call them legs) joined in the origin. We give a strong approximation of these two objects and their local times. For fixed number of legs we establish limit theorems on local and occupation times in n steps.", "revisions": [ { "version": "v1", "updated": "2016-09-27T23:51:06.000Z" } ], "analyses": { "subjects": [ "60F05", "60F15", "60G50", "60J65", "60J10" ], "keywords": [ "occupation times", "brownian motion", "simple random walk", "half lines", "strong approximation" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }