{ "id": "1609.07456", "version": "v1", "published": "2016-09-23T18:31:18.000Z", "updated": "2016-09-23T18:31:18.000Z", "title": "Bounds on multiplicities of spherical spaces over finite fields", "authors": [ "Avraham Aizenbud", "Nir Avni" ], "categories": [ "math.RT" ], "abstract": "Let $G$ be a reductive group scheme of type $A$ acting on a spherical scheme $X$. We prove that there exists a number $C$ such that the multiplicity $\\dim Hom(\\rho,\\mathbb{C}[X(F)])$ is bounded by $C$, for any finite field $F$ and any irreducible representation $\\rho$ of $G(F)$. We give an explicit bound for $C$. We conjecture that this result is true for any reductive group scheme and when $F$ ranges (in addition) over all local fields of characteristic $0$.", "revisions": [ { "version": "v1", "updated": "2016-09-23T18:31:18.000Z" } ], "analyses": { "subjects": [ "20C15", "20C15", "14M27" ], "keywords": [ "finite field", "spherical spaces", "reductive group scheme", "multiplicity", "explicit bound" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }