{ "id": "1609.07447", "version": "v1", "published": "2016-09-23T17:47:19.000Z", "updated": "2016-09-23T17:47:19.000Z", "title": "Variational techniques in general relativity: A metric-affine approach to Kaluza's theory", "authors": [ "Enrico Massa", "Stefano Vignolo" ], "journal": "Journal of Mathematical Physics 48, 022501 (2007)", "doi": "10.1063/1.2435087", "categories": [ "math-ph", "gr-qc", "math.MP" ], "abstract": "A new variational principle for General Relativity, based on an action functional $I\\/(\\Phi,\\nabla)\\/$ involving both the metric $\\Phi\\/$ and the connection $\\nabla\\/$ as independent, \\emph{unconstrained\\/} degrees of freedom is presented. The extremals of $I\\/$ are seen to be pairs $\\/(\\Phi,\\nabla)\\/$ in which $\\Phi\\/$ is a Ricci flat metric, and $\\nabla\\/$ is the associated Riemannian connection. An application to Kaluza's theory of interacting gravitational and electromagnetic fields is discussed.", "revisions": [ { "version": "v1", "updated": "2016-09-23T17:47:19.000Z" } ], "analyses": { "keywords": [ "general relativity", "kaluzas theory", "metric-affine approach", "variational techniques", "ricci flat metric" ], "tags": [ "journal article" ], "publication": { "publisher": "AIP", "journal": "J. Math. Phys." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }