{ "id": "1609.06627", "version": "v1", "published": "2016-09-21T16:41:18.000Z", "updated": "2016-09-21T16:41:18.000Z", "title": "How round are the complementary components of planar Brownian motion?", "authors": [ "Nina Holden", "Serban Nacu", "Yuval Peres", "Thomas S. Salisbury" ], "comment": "28 pages, 11 figures", "categories": [ "math.PR" ], "abstract": "Consider a Brownian motion $W$ in ${\\bf C}$ started from $0$ and run for time 1. Let $A(1),A(2),\\dots$ denote the bounded connected components of ${\\bf C}-W([0,1])$. Let $R(i)$ (resp. $r(i)$) denote the out-radius (resp. in-radius) of $A(i)$ for $i\\in\\bf N$. Our main result is that ${\\bf E}[\\sum_i R(i)^2|\\log R(i)|^\\theta ]<\\infty$ for any $\\theta<1$. We also prove that $\\sum_i r(i)^2|\\log r(i)|=\\infty$ almost surely. These results have the interpretation that most of the components $A(i)$ have a rather regular or round shape.", "revisions": [ { "version": "v1", "updated": "2016-09-21T16:41:18.000Z" } ], "analyses": { "subjects": [ "60D05" ], "keywords": [ "planar brownian motion", "complementary components", "round shape", "main result", "out-radius" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }