{ "id": "1609.06552", "version": "v1", "published": "2016-09-21T13:34:00.000Z", "updated": "2016-09-21T13:34:00.000Z", "title": "Distances from the vertices of a regular simplex", "authors": [ "Mowaffaq Hajja", "Mostafa Hayajneh", "Bach Nguyen", "Shadi Shaqaqha" ], "categories": [ "math.MG" ], "abstract": "If $S$ is a given regular $d$-simplex of edge length $a$ in the $d$-dimensional Euclidean space $\\mathcal{E}$, then the distances $t_1$, $\\cdots$, $t_{d+1}$ of an arbitrary point in $\\mathcal{E}$ to the vertices of $S$ are related by the elegant relation $$(d+1)\\left( a^4+t_1^4+\\cdots+t_{d+1}^4\\right)=\\left( a^2+t_1^2+\\cdots+t_{d+1}^2\\right)^2.$$ The purpose of this paper is to prove that this is essentially the only relation that exists among $t_1,\\cdots,t_{d+1}.$ The proof uses tools from analysis, algebra, and geometry.", "revisions": [ { "version": "v1", "updated": "2016-09-21T13:34:00.000Z" } ], "analyses": { "keywords": [ "regular simplex", "dimensional euclidean space", "edge length", "arbitrary point", "elegant relation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }