{ "id": "1609.06489", "version": "v1", "published": "2016-09-21T10:25:45.000Z", "updated": "2016-09-21T10:25:45.000Z", "title": "An application of the sum-product phenomenon to sets having no solutions of several linear equations", "authors": [ "Ilya D. Shkredov" ], "comment": "31 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "We prove that for an arbitrary $\\kappa < \\frac{5}{31}$ any subset of $\\mathbf{F}_p$ avoiding $t$ linear equations with three variables has size less than $O(p/t^\\kappa)$. We also find several applications to problems about so--called non--averaging sets, number of collinear triples and mixed energies.", "revisions": [ { "version": "v1", "updated": "2016-09-21T10:25:45.000Z" } ], "analyses": { "keywords": [ "linear equations", "sum-product phenomenon", "application", "collinear triples" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }