{ "id": "1609.06436", "version": "v1", "published": "2016-09-21T06:52:07.000Z", "updated": "2016-09-21T06:52:07.000Z", "title": "Fundamental group of moduli of principal bundles on curves", "authors": [ "Indranil Biswas", "Swarnava Mukhopadhyay", "Arjun Paul" ], "categories": [ "math.AG", "math.AT", "math.GT" ], "abstract": "Let $X$ be a compact connected Riemann surface of genus at least two, and let ${G}$ be a connected semisimple affine algebraic group defined over $\\mathbb C$. For any $\\delta \\in \\pi_1({G})$, we prove that the moduli space of semistable principal ${G}$--bundles over $X$ of topological type $\\delta$ is simply connected. In contrast, the fundamental group of the moduli stack of principal ${G}$--bundles over $X$ of topological type $\\delta$ is shown to be isomorphic to $H^1(X, \\pi_1({G}))$.", "revisions": [ { "version": "v1", "updated": "2016-09-21T06:52:07.000Z" } ], "analyses": { "subjects": [ "14D23", "14D20", "14H30" ], "keywords": [ "fundamental group", "principal bundles", "connected semisimple affine algebraic group", "compact connected riemann surface", "topological type" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }