{ "id": "1609.05681", "version": "v1", "published": "2016-09-19T12:08:24.000Z", "updated": "2016-09-19T12:08:24.000Z", "title": "H-distribution via Sobolev spaces", "authors": [ "Jelena Aleksic", "Stevan Pilipovic", "Ivana Vojnovic" ], "categories": [ "math.AP" ], "abstract": "H-distributions associated to weakly convergent sequences in Sobolev spaces are determined. It is shown that a weakly convergent sequence $(u_n)$ in $W^{-k,p}( \\R^d)$ has the property that $\\theta u_n$ converges strongly in $W^{-k,p}(\\R^d)$ for every $\\theta\\in\\mathcal S(\\R^d)$ if and only if all H-distributions related to this sequence are equal to zero. Results are applied on a weakly convergent sequence of solutions to a family of linear first order PDEs.", "revisions": [ { "version": "v1", "updated": "2016-09-19T12:08:24.000Z" } ], "analyses": { "subjects": [ "46F25" ], "keywords": [ "sobolev spaces", "weakly convergent sequence", "h-distribution", "linear first order pdes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }