{ "id": "1609.05658", "version": "v1", "published": "2016-09-19T10:31:16.000Z", "updated": "2016-09-19T10:31:16.000Z", "title": "Integrals of products of Hurwitz zeta functions via Feynman parametrization and two double sums of Riemann zeta functions", "authors": [ "M. A. Shpot", "R. B. Paris" ], "comment": "14 pages 0 figures", "categories": [ "math.CA" ], "abstract": "We consider two integrals over $x\\in [0,1]$ involving products of the function $\\zeta_1(a,x)\\equiv \\zeta(a,x)-x^{-a}$, where $\\zeta(a,x)$ is the Hurwitz zeta function, given by $$\\int_0^1\\zeta_1(a,x)\\zeta_1(b,x)\\,dx\\quad\\mbox{and}\\quad \\int_0^1\\zeta_1(a,x)\\zeta_1(b,1-x)\\,dx$$ when $\\Re (a,b)>1$. These integrals have been investigated recently in \\cite{SCP}; here we provide an alternative derivation by application of Feynman parametrization. We also discuss a moment integral and the evaluation of two doubly infinite sums containing the Riemann zeta function $\\zeta(x)$ and two free parameters $a$ and $b$. The limiting forms of these sums when $a+b$ takes on integer values are considered.", "revisions": [ { "version": "v1", "updated": "2016-09-19T10:31:16.000Z" } ], "analyses": { "subjects": [ "11M35", "33B15", "33E20" ], "keywords": [ "riemann zeta function", "hurwitz zeta function", "feynman parametrization", "double sums", "moment integral" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }