{ "id": "1609.05657", "version": "v1", "published": "2016-09-19T10:29:53.000Z", "updated": "2016-09-19T10:29:53.000Z", "title": "On the smallest size of an almost complete subset of a conic in $\\mathrm{PG}(2,q)$ and extendability of Reed-Solomon codes", "authors": [ "Daniele Bartoli", "Alexander A. Davydov", "Stefano Marcugini", "Fernanda Pambianco" ], "comment": "20 pages, 20 references, 2 figures, 2 tables", "categories": [ "math.CO" ], "abstract": "A subset $\\mathcal{S}$ of a conic $\\mathcal{C}$ in the projective plane $\\mathrm{PG}(2,q)$ is called almost complete (AC-subset for short) if it can be extended to a larger arc in $\\mathrm{PG}(2,q)$ only by the points of $\\mathcal{C}\\setminus\\mathcal{S}$ and by the nucleus of $\\mathcal{C}$ when $q$ is even. New upper bounds on the smallest size $t(q)$ of an AC-subset are obtained, in particular \\begin{align*} & t(q)<\\sqrt{q(3\\ln q+\\ln\\ln q +\\ln3)}+\\sqrt{\\frac{q}{3\\ln q}}+4\\thicksim \\sqrt{3}\\sqrt{q\\ln q};\\\\ & t(q)<1.835\\sqrt{q\\ln q}. \\end{align*} The new bounds are used to increase regions of pairs $(N,q)$ for which it is proved that every normal rational curve in $\\mathrm{PG}(N,q)$ is a complete $(q+1)$-arc or, equivalently, that a $[q+1,N+1,q-N+1]_q$ generalized doubly-extended Reed-Solomon code cannot be extended to a $[q+2,N+2,q-N+1]_q$ code.", "revisions": [ { "version": "v1", "updated": "2016-09-19T10:29:53.000Z" } ], "analyses": { "subjects": [ "51E21", "51E22", "94B05" ], "keywords": [ "complete subset", "smallest size", "extendability", "normal rational curve", "increase regions" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }