{ "id": "1609.05301", "version": "v1", "published": "2016-09-17T08:53:18.000Z", "updated": "2016-09-17T08:53:18.000Z", "title": "Unbounded $p$-convergence in Lattice-Normed Vector Lattice", "authors": [ "A. Aydın", "E. Yu. Emelyanov", "N. Erkurşun Özcan", "M. A. A. Marabeh" ], "categories": [ "math.FA" ], "abstract": "A net $x_\\alpha$ in a lattice-normed vector lattice $(X,p,E)$ is unbounded $p$-convergent to $x\\in X$, if $p(|x_\\alpha-x|\\wedge u)\\stackrel{{o}}\\to 0$ for every $u\\in X_+$. This convergence has been investigated recently for $(X,p,E)=(X,|\\cdot |,X)$ under the name of $uo$-convergence in \\cite{GTX}, for $(X,p,E)=(X,\\|\\cdot\\|,{\\mathbb R})$ under the name of $un$-convergence in \\cite{DOT,KMT}, and also for $(X,p,{\\mathbb R}^{X^*})$, where $p(x)[f]:=|f|(|x|)$ under the name $uaw$-convergence in \\cite{Z}. In this paper we study general properties of the unbounded $p$-convergence and of mixed-normed spaces.", "revisions": [ { "version": "v1", "updated": "2016-09-17T08:53:18.000Z" } ], "analyses": { "subjects": [ "46A40", "46E30", "28A20" ], "keywords": [ "lattice-normed vector lattice", "convergence", "study general properties", "convergent" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }