{ "id": "1609.05059", "version": "v1", "published": "2016-09-16T14:02:50.000Z", "updated": "2016-09-16T14:02:50.000Z", "title": "Decomposing planar cubic graphs", "authors": [ "Arthur Hoffmann-Ostenhof", "Tomáš Kaiser", "Kenta Ozeki" ], "categories": [ "math.CO" ], "abstract": "The 3-Decomposition Conjecture states that every connected cubic graph can be decomposed into a spanning tree, a 2-regular subgraph and a matching. We show that this conjecture holds for the class of connected plane cubic graphs.", "revisions": [ { "version": "v1", "updated": "2016-09-16T14:02:50.000Z" } ], "analyses": { "subjects": [ "05C70", "05C10" ], "keywords": [ "decomposing planar cubic graphs", "connected plane cubic graphs", "conjecture states", "conjecture holds", "connected cubic graph" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }