{ "id": "1609.04865", "version": "v1", "published": "2016-09-15T21:40:32.000Z", "updated": "2016-09-15T21:40:32.000Z", "title": "The Delta Conjecture at $q=1$", "authors": [ "Marino Romero" ], "categories": [ "math.CO" ], "abstract": "We use a weight-preserving, sign-reversing involution to find a combinatorial expansion of $\\Delta_{e_k} e_n$ at $q=1$ in terms of the elementary symmetric function basis. We then use a weight-preserving bijection to prove the Delta Conjecture at $q=1$. The method of proof provides a variety of structures which can compute the inner product of $\\Delta_{e_k} e_n|_{q=1}$ with any symmetric function.", "revisions": [ { "version": "v1", "updated": "2016-09-15T21:40:32.000Z" } ], "analyses": { "subjects": [ "05Exx", "05E05", "05E10" ], "keywords": [ "delta conjecture", "elementary symmetric function basis", "combinatorial expansion", "inner product", "sign-reversing involution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }