{ "id": "1609.04715", "version": "v1", "published": "2016-09-15T16:09:25.000Z", "updated": "2016-09-15T16:09:25.000Z", "title": "Mordell-Weil ranks of families of elliptic curves parametrized by binary quadratic forms", "authors": [ "Bartosz Naskręcki" ], "comment": "21 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "We prove results on the Mordell--Weil rank of elliptic curves $y^2=x(x-\\alpha a^2)(x-\\beta b^2)$ parametrized by binary quadratic forms $\\alpha a^2+\\beta b^2=\\gamma c^2$. We express our explicit lower bounds over number fields and offer a detailed description of the corresponding Mordell-Weil group structure in the function field case.", "revisions": [ { "version": "v1", "updated": "2016-09-15T16:09:25.000Z" } ], "analyses": { "subjects": [ "14H52", "11D25", "11D45", "11G05" ], "keywords": [ "binary quadratic forms", "mordell-weil rank", "elliptic curves", "explicit lower bounds", "function field case" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }