{ "id": "1609.04458", "version": "v1", "published": "2016-09-14T22:13:53.000Z", "updated": "2016-09-14T22:13:53.000Z", "title": "On the asymptotic Fermat's Last Theorem over number fields", "authors": [ "Mehment Haluk Şengün", "Samir Siksek" ], "categories": [ "math.NT" ], "abstract": "Assuming two deep but standard conjectures from the Langlands Programme, we prove that the asymptotic Fermat's Last Theorem holds for imaginary quadratic fields $\\mathbb{Q}(\\sqrt{-d})$ with $-d \\equiv 2$, $3 \\pmod{4}$. For a general number field $K$, again assuming standard conjectures, we give a criterion based on the solutions to a certain $S$-unit equation, which if satisfied implies the asymptotic Fermat's Last Theorem.", "revisions": [ { "version": "v1", "updated": "2016-09-14T22:13:53.000Z" } ], "analyses": { "subjects": [ "11D41" ], "keywords": [ "asymptotic fermats", "general number field", "imaginary quadratic fields", "langlands programme", "theorem holds" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }