{ "id": "1609.04437", "version": "v1", "published": "2016-09-14T20:35:06.000Z", "updated": "2016-09-14T20:35:06.000Z", "title": "Robust recovery-type a posteriori error estimators for streamline upwind/Petrov Galerkin discretizations for singularly perturbed problems", "authors": [ "Shaohong Du", "Runchang Lin", "Zhimin Zhang" ], "comment": "20 pages, 14 figures", "categories": [ "math.NA" ], "abstract": "In this paper, we investigate adaptive streamline upwind/Petrov Galerkin (SUPG) methods for singularly perturbed convection-diffusion-reaction equations in a new dual norm presented in [Du and Zhang, J. Sci. Comput. (2015)]. The flux is recovered by either local averaging in conforming $H({\\rm div})$ spaces or weighted global $L^2$ projection onto conforming $H({\\rm div})$ spaces. We further introduce a recovery stabilization procedure, and develop completely robust a posteriori error estimators with respect to the singular perturbation parameter $\\varepsilon$. Numerical experiments are reported to support the theoretical results and to show that the estimated errors depend on the degrees of freedom uniformly in $\\varepsilon$.", "revisions": [ { "version": "v1", "updated": "2016-09-14T20:35:06.000Z" } ], "analyses": { "subjects": [ "65N15", "65N30", "65J15" ], "keywords": [ "streamline upwind/petrov galerkin discretizations", "posteriori error estimators", "singularly perturbed problems", "robust recovery-type", "adaptive streamline upwind/petrov galerkin" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }