{ "id": "1609.04192", "version": "v1", "published": "2016-09-14T09:41:20.000Z", "updated": "2016-09-14T09:41:20.000Z", "title": "Riemann-Hilbert correspondence for mixed twistor D-Modules", "authors": [ "Teresa Monteiro Fernandes", "Claude Sabbah" ], "comment": "36 pages", "categories": [ "math.AG", "math.CV" ], "abstract": "We introduce the notion of regularity for a relative holonomic $\\mathcal D$-module in the sense of arXiv:1204.1331. We prove that the solution functor from the bounded derived category of regular relative holonomic modules to that of relative constructible complexes is essentially surjective by constructing a right quasi-inverse functor. When restricted to relative $\\mathcal D$-modules underlying a regular mixed twistor $\\mathcal D$-module, this functor satisfies the left quasi-inverse property.", "revisions": [ { "version": "v1", "updated": "2016-09-14T09:41:20.000Z" } ], "analyses": { "subjects": [ "14F10", "32C38", "32S40", "32S60", "35Nxx", "58J10" ], "keywords": [ "mixed twistor d-modules", "riemann-hilbert correspondence", "right quasi-inverse functor", "regular relative holonomic modules", "left quasi-inverse property" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable" } } }