{ "id": "1609.04118", "version": "v1", "published": "2016-09-14T03:13:23.000Z", "updated": "2016-09-14T03:13:23.000Z", "title": "Divergent trajectories under diagonal geodesic flow and splitting of discrete subgroups of $\\mathrm{SO}(n,1) \\times \\mathrm{SO}(n,1)$", "authors": [ "Lei Yang" ], "comment": "6 pages", "categories": [ "math.DS" ], "abstract": "Let $H = \\mathrm{SO}(n,1)$ and $A = \\{a(t): t \\in \\mathbb{R}\\}$ be a maximal $\\mathbb{R}$-split Cartan subgroup of $H$. Let $\\Gamma \\subset H \\times H$ be a nonuniform lattice in $H \\times H$ and $X_{\\Gamma} : = H \\times H/ \\Gamma$. Let $A_2 : = \\{ a_2(t):=a(t) \\times a(t) : t \\in \\mathbb{R}\\} \\subset A\\times A$ on $X_{\\Gamma}$ and $\\mathcal{D}_{\\Gamma}\\subset X_{\\Gamma}$ denote the collection of points $x \\in X_{\\Gamma}$ such that $a_2(t)x$ diverges as $t \\rightarrow +\\infty$. In this note, we will show that if the Hausdorff dimension of $\\mathcal{D}_{\\Gamma}$ is greater than $\\dim (H\\times H) - 2(n-1)$, then $\\Gamma $ is essentially split, namely, it contains a subgroup of finite index of form $\\Gamma_1 \\times \\Gamma_2 $, where $\\Gamma_1$ and $\\Gamma_2$ are both lattices in $H$.", "revisions": [ { "version": "v1", "updated": "2016-09-14T03:13:23.000Z" } ], "analyses": { "subjects": [ "37A17", "22E40" ], "keywords": [ "diagonal geodesic flow", "discrete subgroups", "divergent trajectories", "split cartan subgroup", "nonuniform lattice" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }