{ "id": "1609.03722", "version": "v1", "published": "2016-09-13T08:26:21.000Z", "updated": "2016-09-13T08:26:21.000Z", "title": "On the local closure of clones on countable sets", "authors": [ "Erhard Aichinger" ], "categories": [ "math.LO", "math.RA" ], "abstract": "We consider clones on countable sets. If such a clone has quasigroup operations, is locally closed and countable, then there is a function $f : \\mathbb{N} \\to \\mathbb{N}$ such that the $n$-ary part of $C$ is equal to the $n$-ary part of $\\mathrm{Pol}\\,\\mathrm{Inv}^{[f(n)]} C$, where $\\mathrm{Inv}^{[f(n)]} C$ denotes the set of $f(n)$-ary invariant relations of $C$.", "revisions": [ { "version": "v1", "updated": "2016-09-13T08:26:21.000Z" } ], "analyses": { "subjects": [ "08A40" ], "keywords": [ "countable sets", "local closure", "ary part", "ary invariant relations", "quasigroup operations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }