{ "id": "1609.03631", "version": "v1", "published": "2016-09-12T23:10:24.000Z", "updated": "2016-09-12T23:10:24.000Z", "title": "A spectral refinement of the Bergelson-Host-Kra decomposition and new multiple ergodic theorems", "authors": [ "Joel Moreira", "Florian Karl Richter" ], "categories": [ "math.DS" ], "abstract": "We investigate how spectral properties of a measure preserving system $(X,\\mathcal{B},\\mu,T)$ are reflected in the multiple ergodic averages arising from that system. For certain sequences $a:\\mathbb{N}\\to\\mathbb{N}$ we provide natural conditions on the spectrum $\\sigma(T)$ such that for all $f_1,\\ldots,f_k\\in L^\\infty$, \\begin{equation*} \\lim_{N\\to\\infty} \\frac{1}{N} \\sum_{n=1}^N \\prod_{j=1}^k T^{ja(n)}f_j = \\lim_{N\\rightarrow\\infty} \\frac{1}{N} \\sum_{n=1}^N \\prod_{j=1}^k T^{jn}f_j \\end{equation*} in $L^2$-norm. In particular, our results apply to infinite arithmetic progressions $a(n)=qn+r$, Beatty sequences $a(n)=\\lfloor \\theta n+\\gamma\\rfloor$, the sequence of squarefree numbers $a(n)=q_n$, and the sequence of prime numbers $a(n)=p_n$. From our main results we derive that the set of prime numbers is a set of multiple recurrence for totally ergodic systems. We also obtain new refinements of Szemer{\\'e}di's theorem via Furstenberg's correspondence principle.", "revisions": [ { "version": "v1", "updated": "2016-09-12T23:10:24.000Z" } ], "analyses": { "subjects": [ "37A05", "37A30", "37A45", "05D10" ], "keywords": [ "multiple ergodic theorems", "bergelson-host-kra decomposition", "spectral refinement", "prime numbers", "infinite arithmetic progressions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }