{ "id": "1609.03226", "version": "v1", "published": "2016-09-11T22:42:58.000Z", "updated": "2016-09-11T22:42:58.000Z", "title": "Bounded holomorphic functional calculus for nonsymmetric Ornstein-Uhlenbeck operators", "authors": [ "Andrea Carbonaro", "Oliver Dragičević" ], "categories": [ "math.FA" ], "abstract": "We study bounded holomorphic functional calculus for nonsymmetric infinite dimensional Ornstein-Uhlenbeck operators ${\\mathscr L}$. We prove that if $-{\\mathscr L}$ generates an analytic semigroup on $L^{2}(\\gamma_{\\infty})$, then ${\\mathscr L}$ has bounded holomorphic functional calculus on $L^{r}(\\gamma_{\\infty})$, $1\\theta^{*}_{r}$, where $\\gamma_{\\infty}$ is the associated invariant measure and $\\theta^{*}_{r}$ the sectoriality angle of ${\\mathscr L}$ on $L^{r}(\\gamma_{\\infty})$. The angle $\\theta^{*}_{r}$ is optimal. In particular our result applies to any nondegenerate finite dimensional Ornstein-Uhlenbeck operator, with dimension-free estimates.", "revisions": [ { "version": "v1", "updated": "2016-09-11T22:42:58.000Z" } ], "analyses": { "keywords": [ "bounded holomorphic functional calculus", "nonsymmetric ornstein-uhlenbeck operators", "nonsymmetric infinite dimensional ornstein-uhlenbeck operators", "nondegenerate finite dimensional ornstein-uhlenbeck operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }