{ "id": "1609.03078", "version": "v1", "published": "2016-09-10T18:34:12.000Z", "updated": "2016-09-10T18:34:12.000Z", "title": "Solovay's inaccessible over a weak set theory without choice", "authors": [ "Haim Horowitz", "Saharon Shelah" ], "categories": [ "math.LO" ], "abstract": "We study the consistency strength of Lebesgue measurability for $\\Sigma^1_3$ sets over a weak set theory in a completely choiceless context. We establish a result analogous to the Solovay-Shelah theorem.", "revisions": [ { "version": "v1", "updated": "2016-09-10T18:34:12.000Z" } ], "analyses": { "keywords": [ "weak set theory", "solovays inaccessible", "consistency strength", "lebesgue measurability", "solovay-shelah theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }