{ "id": "1609.02529", "version": "v1", "published": "2016-09-08T18:49:04.000Z", "updated": "2016-09-08T18:49:04.000Z", "title": "Pointwise convergence of some multiple ergodic averages", "authors": [ "Sebastián Donoso", "Wenbo Sun" ], "categories": [ "math.DS" ], "abstract": "We show that for every ergodic system $(X,\\mu,T_1,\\ldots,T_d)$ with commuting transformations, the average \\[\\frac{1}{N^{d+1}} \\sum_{0\\leq n_1,\\ldots,n_d \\leq N-1} \\sum_{0\\leq n\\leq N-1} f_1(T_1^n \\prod_{j=1}^d T_j^{n_j}x)f_2(T_2^n \\prod_{j=1}^d T_j^{n_j}x)\\cdots f_d(T_d^n \\prod_{j=1}^d T_j^{n_j}x). \\] converges for $\\mu$-a.e. $x\\in X$ as $N\\to\\infty$. If $X$ is distal, we prove that the average \\[\\frac{1}{N}\\sum_{i=0}^{N} f_1(T_1^nx)f_2(T_2^nx)\\cdots f_d(T_d^nx) \\] converges for $\\mu$-a.e. $x\\in X$ as $N\\to\\infty$. We also establish the pointwise convergence of averages along cubical configurations arising from a system commuting transformations. Our methods combine the existence of sated and magic extensions introduced by Austin and Host respectively with ideas on topological models by Huang, Shao and Ye.", "revisions": [ { "version": "v1", "updated": "2016-09-08T18:49:04.000Z" } ], "analyses": { "subjects": [ "37A30", "54H20" ], "keywords": [ "multiple ergodic averages", "pointwise convergence", "magic extensions", "ergodic system", "system commuting transformations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }