{ "id": "1609.02314", "version": "v1", "published": "2016-09-08T08:08:52.000Z", "updated": "2016-09-08T08:08:52.000Z", "title": "Number of Irreducible Polynomials over Finite Fields with First Two Coefficients Fixed", "authors": [ "Gary McGuire", "Emrah Sercan Yılmaz" ], "comment": "arXiv admin note: text overlap with arXiv:1605.07229", "categories": [ "math.AG" ], "abstract": "Let $p$ be an odd prime number. For any positive integers $n\\geq 2, r\\geq 1$ we present formulae for the number of irreducible polynomials of degree $n$ over the finite field $\\mathbb F_{p^r}$ where the coefficients of $x^{n-1}$ and $x^{n-2}$ are fixed. Our proof involves counting the number of points on an algebraic curve over finite fields.", "revisions": [ { "version": "v1", "updated": "2016-09-08T08:08:52.000Z" } ], "analyses": { "keywords": [ "finite field", "irreducible polynomials", "coefficients", "odd prime number", "algebraic curve" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }