{ "id": "1609.02275", "version": "v1", "published": "2016-09-08T05:07:58.000Z", "updated": "2016-09-08T05:07:58.000Z", "title": "Uniform Regularity and Vanishing Viscosity limit for the chemotaxis-Navier-Stokes system in a 3D bounded domain", "authors": [ "Zhipeng Zhang" ], "comment": "42pages. arXiv admin note: text overlap with arXiv:1607.05920 by other authors", "categories": [ "math.AP" ], "abstract": "We investigate the uniform regularity and vanishing viscosity limit for the incompressible chemotaxis-Navier-Stokes system in a smooth bounded domain $\\Omega\\subset\\mathbb{R}^3$. It is shown that there exists a unique strong solution of the incompressible chemotaxis-Navier-Stokes system in a finite time interval which is independent of the viscosity coefficient. Moreover, the solution is uniformly bounded in a conormal Sobolev space, which allows us to take the vanishing viscosity limit to obtain the incompressible inviscid chemotaxis-Navier-Stokes system.", "revisions": [ { "version": "v1", "updated": "2016-09-08T05:07:58.000Z" } ], "analyses": { "subjects": [ "35Q30", "76D03", "76D05", "76D07" ], "keywords": [ "vanishing viscosity limit", "3d bounded domain", "uniform regularity", "incompressible chemotaxis-navier-stokes system", "conormal sobolev space" ], "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable" } } }