{ "id": "1609.02119", "version": "v1", "published": "2016-09-07T19:16:00.000Z", "updated": "2016-09-07T19:16:00.000Z", "title": "Degeneration of Dynamical Degrees in Families of Maps", "authors": [ "Gregory Call", "Joseph H. Silverman" ], "comment": "17 pages", "categories": [ "math.NT", "math.DS" ], "abstract": "The dynamical degree of a dominant rational map $f:\\mathbb{P}^N-rightarrow\\mathbb{P}^N$ is the quantity $\\delta(f):=\\lim(\\text{deg} f^n)^{1/n}$. We study the variation of dynamical degrees in 1-parameter families of maps $f_T$. We make three conjectures concerning, respectively, the set of $t$ such that: (1) $\\delta(f_t)\\le\\delta(f_T)-\\epsilon$; (2) $\\delta(f_t)<\\delta(f_T)$; (3) $\\delta(f_t)<\\delta(f_T)$ and $\\delta(g_t)<\\delta(g_T)$ for \"independent\" families of maps. We prove our first conjecture for monomial maps and give evidence for our second and third conjectures by proving them for certain non-trivial families.", "revisions": [ { "version": "v1", "updated": "2016-09-07T19:16:00.000Z" } ], "analyses": { "subjects": [ "37P05", "37P30", "37P55" ], "keywords": [ "dynamical degree", "degeneration", "dominant rational map", "monomial maps", "third conjectures" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }