{ "id": "1609.02113", "version": "v1", "published": "2016-09-07T18:59:07.000Z", "updated": "2016-09-07T18:59:07.000Z", "title": "Uniqueness of Embeddings of the Affine Line into Algebraic Groups", "authors": [ "Peter Feller", "Immanuel van Santen né Stampfli" ], "comment": "37 pages, comments welcome", "categories": [ "math.AG" ], "abstract": "Let $Y$ be the underlying variety of a connected affine algebraic group. We prove that two embeddings of the affine line $\\mathbb{C}$ into $Y$ are the same up to an automorphism of $Y$ provided that $Y$ is not isomorphic to a product of a torus $(\\mathbb{C}^\\ast)^k$ and one of the three varieties $\\mathbb{C}^3$, $\\operatorname{SL}_2$, and $\\operatorname{PSL}_2$.", "revisions": [ { "version": "v1", "updated": "2016-09-07T18:59:07.000Z" } ], "analyses": { "subjects": [ "14R10", "20G20", "14J50", "14R25", "14M15" ], "keywords": [ "affine line", "embeddings", "uniqueness", "connected affine algebraic group" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable" } } }