{ "id": "1609.02029", "version": "v1", "published": "2016-09-07T15:45:08.000Z", "updated": "2016-09-07T15:45:08.000Z", "title": "${\\rm B}_π$-characters and quotients", "authors": [ "Mark L. Lewis" ], "comment": "3 pages", "categories": [ "math.GR" ], "abstract": "Let $\\pi$ be a set of primes, and let $G$ be a finite $\\pi$-separable group. We consider the Isaacs ${\\rm B}_\\pi$-characters. We show that if $N$ is a normal subgroup of $G$, then ${\\rm B}_\\pi (G/N) = {\\rm Irr} (G/N) \\cap {\\rm B}_\\pi (G)$.", "revisions": [ { "version": "v1", "updated": "2016-09-07T15:45:08.000Z" } ], "analyses": { "subjects": [ "20C15" ], "keywords": [ "characters", "normal subgroup", "separable group" ], "note": { "typesetting": "TeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable" } } }