{ "id": "1609.01749", "version": "v1", "published": "2016-09-05T10:29:12.000Z", "updated": "2016-09-05T10:29:12.000Z", "title": "Short note on energy maximization property of the first eigenfunction of the Laplacian", "authors": [ "Hayk Mikayelyan" ], "categories": [ "math.AP" ], "abstract": "We consider the Dirichlet-energy maximization problem of the solution $u_f$ of (\\ref{main}), among all functions $f\\in L^2(D)$, such that $\\|f\\|_2= 1$. We show that the two maximizers are the first eigenfunctions of the Laplacian with Dirichlet boundary condition $f=\\pm u_1$.", "revisions": [ { "version": "v1", "updated": "2016-09-05T10:29:12.000Z" } ], "analyses": { "subjects": [ "35P15", "35P99" ], "keywords": [ "energy maximization property", "first eigenfunction", "short note", "dirichlet-energy maximization problem", "dirichlet boundary condition" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }