{ "id": "1609.01435", "version": "v1", "published": "2016-09-06T08:44:18.000Z", "updated": "2016-09-06T08:44:18.000Z", "title": "Operator self-similar processes and functional central limit theorems", "authors": [ "Vaidotas Characiejus", "Alfredas Račkauskas" ], "comment": "22 pages", "journal": "Stochastic Processes and their Applications, Volume 124, Issue 8, August 2014, Pages 2605-2627", "doi": "10.1016/j.spa.2014.03.007", "categories": [ "math.PR" ], "abstract": "Let $\\{X_k:k\\ge1\\}$ be a linear process with values in the separable Hilbert space $L_2(\\mu)$ given by $X_k=\\sum_{j=0}^\\infty(j+1)^{-D}\\varepsilon_{k-j}$ for each $k\\ge1$, where $D$ is defined by $Df=\\{d(s)f(s):s\\in\\mathbb S\\}$ for each $f\\in L_2(\\mu)$ with $d:\\mathbb S\\to\\mathbb R$ and $\\{\\varepsilon_k:k\\in\\mathbb Z\\}$ are independent and identically distributed $L_2(\\mu)$-valued random elements with $\\operatorname E\\varepsilon_0=0$ and $\\operatorname E\\|\\varepsilon_0\\|^2<\\infty$. We establish sufficient conditions for the functional central limit theorem for $\\{X_k:k\\ge1\\}$ when the series of operator norms $\\sum_{j=0}^\\infty\\|(j+1)^{-D}\\|$ diverges and show that the limit process generates an operator self-similar process.", "revisions": [ { "version": "v1", "updated": "2016-09-06T08:44:18.000Z" } ], "analyses": { "subjects": [ "60B12", "60F17", "60G18" ], "keywords": [ "functional central limit theorem", "operator self-similar process", "limit process generates", "establish sufficient conditions", "separable hilbert space" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }