{ "id": "1609.01273", "version": "v1", "published": "2016-09-05T19:58:28.000Z", "updated": "2016-09-05T19:58:28.000Z", "title": "Lipschitz Embeddings of Random Fields", "authors": [ "Riddhipratim Basu", "Vladas Sidoravicius", "Allan Sly" ], "comment": "48 pages, 13 figures", "categories": [ "math.PR" ], "abstract": "We consider the problem of embedding one i.i.d.\\ collection of Bernoulli random variables indexed by $\\mathbb{Z}^d$ into an independent copy in an injective $M$-Lipschitz manner. For the case $d=1$, it was shown by Basu and Sly (PTRF, 2014) to be possible almost surely for sufficiently large $M$. In this paper we provide a multi-scale argument extending this result to higher dimensions.", "revisions": [ { "version": "v1", "updated": "2016-09-05T19:58:28.000Z" } ], "analyses": { "keywords": [ "random fields", "lipschitz embeddings", "bernoulli random variables", "multi-scale argument", "higher dimensions" ], "note": { "typesetting": "TeX", "pages": 48, "language": "en", "license": "arXiv", "status": "editable" } } }