{ "id": "1609.01138", "version": "v1", "published": "2016-09-05T13:08:47.000Z", "updated": "2016-09-05T13:08:47.000Z", "title": "STIT Tessellations -- Ergodic Limit Theorems and Bounds for the Speed of Convergence", "authors": [ "Servet Martínez", "Werner Nagel" ], "categories": [ "math.PR" ], "abstract": "We consider homogeneous STIT tessellations in the $\\ell$-dimensional Euclidean space ${\\mathbb R}^\\ell$. Based on results for the spatial $\\beta$-mixing coefficient an upper bound for the variance of additive functionals of tessellations is derived, using results by Yoshihara and Heinrich. Moreover, ergodic theorems are applied to subadditive functionals.", "revisions": [ { "version": "v1", "updated": "2016-09-05T13:08:47.000Z" } ], "analyses": { "subjects": [ "60D05", "60J25", "60J75", "37A25" ], "keywords": [ "ergodic limit theorems", "convergence", "dimensional euclidean space", "functionals", "ergodic theorems" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }