{ "id": "1609.01005", "version": "v1", "published": "2016-09-05T00:22:05.000Z", "updated": "2016-09-05T00:22:05.000Z", "title": "The third moment for the parabolic Anderson model", "authors": [ "Le Chen" ], "comment": "16 pages, 6 figures", "categories": [ "math.PR" ], "abstract": "In this paper, we study the {\\it parabolic Anderson model} starting from the Dirac delta initial data: \\[ \\left(\\frac{\\partial}{\\partial t} -\\frac{\\nu}{2}\\frac{\\partial^2}{\\partial x^2} \\right) u(t,x) = \\lambda u(t,x) \\dot{W}(t,x), \\qquad u(0,x)=\\delta_0(x), \\quad x\\in\\mathbb{R}, \\] where $\\dot{W}$ denotes the space-time white noise. By evaluating the threefold contour integral in the third moment formula by Borodin and Corwin [2], we obtain some explicit formulas for $\\mathbb{E}[u(t,x)^3]$. One application of these formulas is given to show the exact phase transition for the intermittency front of order three.", "revisions": [ { "version": "v1", "updated": "2016-09-05T00:22:05.000Z" } ], "analyses": { "subjects": [ "60H15", "35R60" ], "keywords": [ "parabolic anderson model", "dirac delta initial data", "threefold contour integral", "third moment formula", "space-time white noise" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }