{ "id": "1609.01003", "version": "v1", "published": "2016-09-05T00:14:09.000Z", "updated": "2016-09-05T00:14:09.000Z", "title": "Connections in randomly oriented graphs", "authors": [ "Bhargav Narayanan" ], "comment": "6 pages, submitted", "categories": [ "math.PR", "math.CO" ], "abstract": "Given an undirected graph $G$, let us randomly orient $G$ by tossing independent (possibly biased) coins, one for each edge of $G$. Writing $a\\rightarrow b$ for the event that there exists a directed path from a vertex $a$ to a vertex $b$ in such a random orientation, we prove that $\\mathbb{P}(s\\rightarrow a \\cap s\\rightarrow b) \\ge \\mathbb{P}(s\\rightarrow a) \\mathbb{P}(s\\rightarrow b)$ for any three vertices $s$, $a$ and $b$ of $G$.", "revisions": [ { "version": "v1", "updated": "2016-09-05T00:14:09.000Z" } ], "analyses": { "subjects": [ "60C05", "60K35" ], "keywords": [ "randomly oriented graphs", "connections", "random orientation", "tossing independent" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }