{ "id": "1609.00812", "version": "v1", "published": "2016-09-03T10:21:39.000Z", "updated": "2016-09-03T10:21:39.000Z", "title": "The Cesaro operator in growth Banach spaces of analytic functions", "authors": [ "Angela A. Albanese", "José Bonet", "Werner J. Ricker" ], "comment": "17 pages", "categories": [ "math.FA" ], "abstract": "The Cesaro operator $\\mathsf{C}$, when acting in the classical growth Banach spaces $A^{-\\gamma}$ and $A_0^{-\\gamma}$, for $\\gamma > 0 $, of analytic functions on $\\mathbb{D}$, is investigated. Based on a detailed knowledge of their spectra (due to A. Aleman and A.-M. Persson) we are able to determine the norms of these operators precisely. It is then possible to characterize the mean ergodic and related properties of $\\mathsf{C}$ acting in these spaces. In addition, we determine the largest Banach space of analytic functions on $\\mathbb{D}$ which $\\mathsf{C}$ maps into $A^{-\\gamma}$ (resp. into $A_0^{-\\gamma}$); this optimal domain space always contains $A^{-\\gamma}$ (resp. $A_0^{-\\gamma}$) as a proper subspace.", "revisions": [ { "version": "v1", "updated": "2016-09-03T10:21:39.000Z" } ], "analyses": { "subjects": [ "47B38", "46E15", "47A10", "47A16", "47A35" ], "keywords": [ "analytic functions", "cesaro operator", "classical growth banach spaces", "optimal domain space", "largest banach space" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }