{ "id": "1609.00218", "version": "v1", "published": "2016-09-01T12:57:11.000Z", "updated": "2016-09-01T12:57:11.000Z", "title": "On Polya' Theorem in Several Complex Variables", "authors": [ "Ozan Günyüz", "Vyacheslav Zakharyuta" ], "comment": "9 pages. arXiv admin note: substantial text overlap with arXiv:1605.09314", "journal": "Banach Center Publications 107(2015), 149-157", "doi": "10.4064/bc107-0-10", "categories": [ "math.CV" ], "abstract": "Let $K$ be a compact set in $\\mathbb{C}$, $f$ a function analytic in $\\overline{\\mathbb{C}}\\smallsetminus K$ vanishing at $\\infty $. Let $% f\\left( z\\right) =\\sum_{k=0}^{\\infty }a_{k}\\ z^{-k-1}$ be its Taylor expansion at $\\infty $, and $H_{s}\\left( f\\right) =\\det \\left( a_{k+l}\\right) _{k,l=0}^{s}$ the sequence of Hankel determinants. The classical Polya inequality says that \\[ \\limsup\\limits_{s\\rightarrow \\infty }\\left\\vert H_{s}\\left( f\\right) \\right\\vert ^{1/s^{2}}\\leq d\\left( K\\right) , \\]% where $d\\left( K\\right) $ is the transfinite diameter of $K$. Goluzin has shown that for some class of compacta this inequality is sharp. We provide here a sharpness result for the multivariate analog of Polya's inequality, considered by the second author in Math. USSR Sbornik, 25 (1975), 350-364.", "revisions": [ { "version": "v1", "updated": "2016-09-01T12:57:11.000Z" } ], "analyses": { "subjects": [ "32A22", "32A70", "32U35", "46E10" ], "keywords": [ "complex variables", "classical polya inequality says", "transfinite diameter", "hankel determinants", "compact set" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }