{ "id": "1608.08577", "version": "v1", "published": "2016-08-30T17:55:45.000Z", "updated": "2016-08-30T17:55:45.000Z", "title": "Pieri rules for Schur functions in superspace", "authors": [ "Miles Jones", "Luc Lapointe" ], "comment": "43 pages", "categories": [ "math.CO" ], "abstract": "The Schur functions in superspace $s_\\Lambda$ and $\\bar s_\\Lambda$ are the limits $q=t=0$ and $q=t=\\infty$ respectively of the Macdonald polynomials in superspace. We prove Pieri rules for the bases $s_\\Lambda$ and $\\bar s_{\\Lambda}$ (which happen to be essentially dual). As a consequence, we derive the basic properties of these bases such as dualities, monomial expansions, and tableaux generating functions.", "revisions": [ { "version": "v1", "updated": "2016-08-30T17:55:45.000Z" } ], "analyses": { "subjects": [ "05E05" ], "keywords": [ "schur functions", "pieri rules", "superspace", "tableaux generating functions", "basic properties" ], "note": { "typesetting": "TeX", "pages": 43, "language": "en", "license": "arXiv", "status": "editable" } } }