{ "id": "1608.08555", "version": "v1", "published": "2016-08-29T19:33:17.000Z", "updated": "2016-08-29T19:33:17.000Z", "title": "Foliated dynamical systems associated to ordinary abelian varieties over finite fields", "authors": [ "Ouidad Filali", "Francesco Lemma" ], "comment": "Submitted", "categories": [ "math.NT", "math.DS" ], "abstract": "We interpret the \"explicit formula\" in the sense of analytic number theory for the zeta function of an ordinary abelian variety of dimension g over a finite field as a transversal index theorem on a (2g+1)-dimensional Riemannian foliated space. This generalizes a work of Deninger for elliptic curves.", "revisions": [ { "version": "v1", "updated": "2016-08-29T19:33:17.000Z" } ], "analyses": { "keywords": [ "ordinary abelian variety", "finite field", "foliated dynamical systems", "transversal index theorem", "analytic number theory" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }