{ "id": "1608.07991", "version": "v1", "published": "2016-08-29T10:52:40.000Z", "updated": "2016-08-29T10:52:40.000Z", "title": "Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption", "authors": [ "Johannes Lankeit", "Yulan Wang" ], "categories": [ "math.AP" ], "abstract": "This paper deals with the homogeneous Neumann boundary-value problem for the chemotaxis-consumption system \\begin{eqnarray*} \\begin{array}{llc} u_t=\\Delta u-\\chi\\nabla\\cdot (u\\nabla v)+\\kappa u-\\mu u^2,\\\\ v_t=\\Delta v-uv, \\end{array} \\end{eqnarray*} in $N$-dimensional bounded smooth domains for suitably regular positive initial data. We shall establish the existence of a global bounded classical solution for suitably large $\\mu$ and prove that for any $\\mu>0$ there exists a weak solution. Moreover, in the case of $\\kappa>0$ convergence to the constant equilibrium $(\\frac{\\kappa}{\\mu},0)$ is shown.", "revisions": [ { "version": "v1", "updated": "2016-08-29T10:52:40.000Z" } ], "analyses": { "subjects": [ "35Q92", "35K55", "35A01", "35B40", "35D30", "92C17" ], "keywords": [ "high-dimensional chemotaxis system", "global existence", "consumption", "boundedness", "stabilization" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }